Optical Effects on the Characteristics of a Nanoscale Finfet

نویسندگان

  • R. Ramesh
  • M. Madheswaran
  • K. Kannan
چکیده

The effect of optical radiation on a uniformly doped nanoscale FinFET considering quantum mechanical effects has been theoretically examined and analyzed. The device characteristics are obtained from the self-consistent solution of 3D Poisson-Schrödinger equation using interpolating wavelet method. To our best knowledge this is the first approach for the self-consistent solution to surface potential computations of nanoscale FinFET photodetector using interpolating wavelets. This method provides more accurate results by dynamically adjusting the computational mesh and scales the CPU time linearly with the number of mesh points using polynomial interpolation, hence reducing the numerical cost. A fine mesh can be used in domains where the unknown quantities are varying rapidly and a coarse mesh can be used where the unknowns are varying slowly. The results obtained for dark and illuminated conditions are used to examine the performance of the device for its suitable use as a photodetector. Corresponding author: R. Ramesh ([email protected]). 236 Ramesh, Madheswaran, and Kannan

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths

During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...

متن کامل

25 nm Omega FinFET: Three-dimensional Process and Device Simulations

This Sentaurus simulation project provides a template setup for three-dimensional process simulation and device simulations of Omega FinFETs. The threedimensional process simulation is based on a particularly robust approach in which geometry-altering and dopant-related processing steps are executed sequentially in two separate groups. The Sentaurus Workbench template project also performs 3D q...

متن کامل

Numerical Simulation of Nanoscale Fin- Fet Photodetector for Optimal Detection of Biological Signals Using Interpolating Wavelets

The biosensor design for sensing of biological signals is highly complex for accurate detection. Optimal detection of biological signals is necessary for distinguishing different tissues. This paper proposes a threshold-based detection technique which provides significant improvement in FinFET optical biosensor performance using wavelet coefficients. It uses a simple maximum likelihood (ML) fun...

متن کامل

Device Design of Nanoscale MOSFETs Considering the Suppression of Short Channel Effects and Characteristics Variations

The device design of future nanoscale MOSFETs is reviewed. Major challenges in the design of the nanometer MOSFETs and the possible solutions are discussed. In this paper, special emphasis is placed on the combination of new transistor structures that suppress the short channel effect and on back-gate voltage control that suppresses the characteristics variations. Two new device architectures, ...

متن کامل

Role of negative dielectric and optical quantum dot waveguiding methods in communication

While the application of optical and photonic technologies in the communications, computing, medicine and industrial manufacturing has been growing rapidly, the miniaturization of these technologies has been slow due to the limitation on the diffraction. However, the developments of nanoscale components and guiding methods are continuing with a rapid pace. Since waveguiding is a fundamental iss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010